About the Idaho Regional Mathematics Centers

In an effort to carry forward and advance the work started with the Idaho Math Initiative, the State Department of Education partnered with Idaho’s Institutions of Higher Education using funding from the Idaho Legislature to support the Idaho Regional Mathematics Centers.

Through this coordinated, collaborative and comprehensive statewide effort, the Idaho Regional Mathematics Centers strives to ensure that Idaho’s mathematics teachers are highly talented, trained and effective professionals. Operating as regional support centers for all K-12 public schools in Idaho, the Idaho Regional Mathematics Centers provides professional development for teachers and schools and conducts research to support mathematics teaching and learning in Idaho.

The members of the Regional Mathematics Centers provide both regional and school-specific support in mathematics education. They also welcome input from schools and districts about the type of professional development they need. By promoting mathematical thinking, problem solving and the habits of mind necessary for students to effectively understand and apply mathematics, the educational systems within Idaho are substantially strengthened.

The Idaho Regional Mathematics Center at the University of Idaho, Coeur d’Alene, gratefully acknowledges contributions and support from Idaho’s State Legislature and the Idaho State Department of Education, making this book possible.
Introduction

This book has been designed to promote children’s mathematical learning through playing games and exploring activities. The materials in this book span multiple grade levels. Children should be encouraged to try any of the games that they are interested in playing, but some games and activities will be more appropriate for different grade levels.

These materials support engagement in the Standards for Mathematical Practice (Idaho Content Standards for Mathematics, 2019). These are critical habits of mind for children and are embedded in mathematics coursework through high school and beyond. Periodically have your child reflect on which of these they engaged in while playing one of the games or completing a particular activity. You will help to make connections about what it means to do mathematics.

Standards for Mathematical Practice:

• Make sense of problems and persevere in solving them
• Reason abstractly and quantitatively
• Construct viable arguments and critique the reasoning of others
• Model with mathematics
• Use appropriate tools strategically
• Attend to precision
• Look for and make use of structure
• Look for and express regularity in repeated reasoning
Connecting the Games to Mathematics

The games included in this book provide children an opportunity to think about, and engage in, mathematics. As children play these games, they learn important lessons about perseverance, increase their ability to communicate mathematically, and practice their calculation and spatial skills. Playing games should be fun, but this is also an opportunity to build understanding of key concepts. Sometimes children need help to see patterns that will make the game easier. Here are some ways to encourage children to connect these games and activities to the intended mathematical concepts.

Before Playing

Prior to beginning a game, have your child read the directions, or read the directions with your child. Some of the games and activities have accompanying video demonstration links. After reading the instructions, ask your child questions like, “What do you think would be a good strategy for this game?” or “How are you going to add numbers during the game?” These kinds of questions will stimulate thinking about mathematical skills and relationships. Questions like these also demonstrate to children that they can ask themselves similar questions when they approach future games or activities.

While Playing

Many of the games and activities require children to make calculations during the game. It is okay for them to use paper and pencil for these calculations but encourage children to use mental mathematics when they can. Strategies like breaking up numbers to add and subtract can be useful and lead to greater fluency. To solve a problem like 26 + 28, children may think about breaking 26 into 24 + 2. Using this strategy, a child can add 28 and 2 to make 30 and then add 24 more to make 54 without using paper and pencil. These strategies are just as useful for calculations like 8 + 6 or 3/4 + 1/2.

Although many adults do not regularly discuss their strategies while playing a game, encourage children to talk about the decisions they are making. This will help you better understand their thinking. It may be useful, at least initially, to discuss your strategies out loud in order to help children think about the mathematics of the game. During your turn you can say something like, “I have to subtract 15 from 42. I am going to first take away 2 to get to 40. Then I am going to take away 10 to get to 30. And finally, I am going to take away 3 more to get to 27.” This clarifies how you solved the problem and will encourage your child to use similar strategies.

After the Game

When you are finished playing the game, debrief with your child. Ask about the strategies that worked well and those that did not. Try to have your child communicate about parts of the game that were challenging for him or her. Develop ways for your child to address those challenges in the next game. You may find that the game was not at the right level for your child. If the game is too difficult, change game rules to meet your child’s needs. The same is true if the game is too easy. Talking about the game at the end helps everyone feel better about the next time you play.

These suggestions do not need to be followed every time your child plays one of the games or does an activity. Asking these kinds of questions the first time you play the game, and periodically thereafter, promotes thinking about mathematics. Eventually children will begin to think about these questions themselves.
Table of Contents

Dice Games

- Race To/From 100 ... 6
- Getting Close .. 7
- Dice Wars ... 8
- Feeding Piggy ... 9
- Even and Odd Connect Four .. 10

Card Games

- Make Ten Go Fish ... 12
- Best Sum/Product ... 13
- 1 through 10 .. 14
- War— Math Version ... 15

Other Activities

- Base-Ten Riddles ... 16
- Bean 13 .. 18
- Tangrams .. 19
- Math Scavenger Hunts .. 22
- Pattern Blocks .. 24

Resources

- Tangram Manipulatives .. 27
- Pattern Blocks Manipulatives .. 29
- Feeding Piggy Game Boards .. 35
Race To/From 100

What you will need for this game:

• A pair of dice
• A piece of paper
• A pen or pencil

Directions:

Begin by drawing two number lines on the piece of paper and label the ends 0 and 100. Decide which player will go first. During a turn, a player will roll the pair of dice and read the sum of the two dice. He or she will then create a jump of that total above the number line. The player will then record his or her total distance under the number line.

Players take turns rolling and marking their progress. The first player to reach exactly 100 (the total can not be greater than 100) wins the game.

Modifications:

• Players can each start at 100 and play backwards to zero.
• Players can play a shorter version of this game where they race to a target number and back to zero.
• A tape measure or meter stick can be used rather than a number line. Players would move a game piece to show their distance from zero.
• Younger players can play a shortened version of this game (Race to 50, Race from 30) using one die.
• Older players can play a fraction version of this game (Race to 1). Directions for this game can be found at http://www.idahomath.com/resources/race-to-1/.
Getting Close

What you will need for this game:

• The number of dice should match the number of digits in the target number
• A piece of paper
• A pen or pencil to keep score

Directions:

The object of this game is to “Get Close” to a target number. Decide how many digits you want to have in your target number. You can choose from two-digit, three-digit, or four-digit numbers. Someone chooses a target number. Remember, six is the largest number on a die, so if your target number is 900 and you are playing with three dice, it will be difficult to get close to this number.

Before you begin, you will need to create a score card, like the one shown here. During each turn players will create a number using the dice, choosing one die for each digit. Players will record their number in the “My Number” column of the table, then calculate how close to the target their number is, finally they record this new value in the “How Close” column of the table (see sample score card). When both players have completed five rounds, they will add up the numbers in the “How Close” column. The player with the smaller number wins the game.

Notice from the sample score card that for Sue’s first role she made the number 426, which was 126 away from the target number. With her roll, Sue could have made the number 264, which would have only been 36 away from the target number. Players need to think about their numbers carefully. Once a number has been written in the score sheet, a player cannot change the number.

When the game is complete, the winner gets to choose the target number for the next round.

Sample score Card

<table>
<thead>
<tr>
<th>Roll</th>
<th>My Number</th>
<th>How Close?</th>
<th>My Number</th>
<th>How Close?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>312</td>
<td>12</td>
<td>426</td>
<td>126</td>
</tr>
<tr>
<td>2</td>
<td>455</td>
<td>155</td>
<td>264</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>211</td>
<td>89</td>
<td>325</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>345</td>
<td>45</td>
<td>241</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>326</td>
<td>26</td>
<td>356</td>
<td>56</td>
</tr>
<tr>
<td>Total</td>
<td>327</td>
<td></td>
<td>302</td>
<td></td>
</tr>
</tbody>
</table>

Suggested Target Numbers:

Two Dice: 30
Three Dice: 300
Four Dice: 3000

* Use one die for each digit of your target number.

Modifications:

Older students can use total the “My Number” column and divide by the number of turns taken to find their average score value. Whatever average is closest to the target number wins the game.
Dice Wars

What you will need for this game:

• 4-6 dice, equal number for each player
• 10—20 counters

Directions:

The game Dice Wars is a two person game where players roll dice, make a calculation, and then the winner takes a counters from the other player. If there is a tie on a round then two counters are taken during the next round. The first player with all of the counters wins the game.

Select one of the versions below:

• Dice Wars Addition (2-3 dice for each player)
 • In this version of the game each player will roll the dice. The values of the dice are added and the person with the larger number wins one counter.

• Dice Wars Subtraction (2-3 dice for each player)
 • In this version of the game each player will roll two dice. The values of the dice are subtracted. You can play that either the person with the largest difference or smallest difference wins a one counter.
 • You can also play this game with three dice for each player. A player rolls all three dice. They use any two dice to make a two-digit number. They take the value of the third dice away from the two-digit number. The person with the biggest value wins one counter.

• Dice Wars Multiplication (2 dice for each player)
 • In this version of the game each player will roll two dice. The values of the dice are multiplied together. The person with the largest product wins a one counter.

• Dice Wars Fractions (2 dice for each player)
 • In this version of the game players will need to decide if they are looking for the largest fraction, the smallest fraction, or the fraction closest to 1/2. Players will roll their dice. They will use the value of one of the dies for the numerator (top number) of the fraction and the other die’s value will be used to make the denominator (bottom number). The winner of the round depends on the objective established at the beginning of the game.
Feeding Piggy

What you will need for this game:

• A single die
• 20 Pennies
• 20 Dimes
• Counters to represent $1.00
• 2 Feeding Piggy Game Boards (back of the book)

Directions:

Feeding Piggy is a game to help younger children think about tens and ones.

Before starting the game, choose a target amount of money.

In this game a player rolls a single die. The player places the number of pennies on the board that correspond to the value that he or she rolled in that turn. When the player fills in all of the pennies, he or she can then trade them in for dimes. When players fill in their dimes table, they can trade those dimes in for one dollar.

Players will continue until someone reaches the target amount of money in his or her piggy bank.

Modifications:

A suggested starting amount would be $2.00, but this amount does not need to be a whole dollars. Consider changing the amount to values like $2.34 as children become familiar with the game.
Even and Odd Connect Four

What you will need for this game:

• A pair of dice
• 20 two-sided counters
• Even and Odd Game Board found on the next page

Directions:

Two players will each roll a single die to see who goes first. The person who rolls an odd number is the first player.

The first player rolls two dice. If the sum of the dice is an even, the player will place a counter on any open square that says even. If the sum of the dice is odd, the player may place a counter on any open square that says odd. Players will take turns. The first person to make a line of four chips (vertical, horizontal, or diagonal) wins the game.

If a person rolls the dice and there is not an open square for his or her chip, the player must pass the dice without placing a chip.

Modifications:

Players can make a larger game board if they would like. One player can use the chips and the other player can use something like pennies to mark his or her turn.
Even and Odd Connect Four

<table>
<thead>
<tr>
<th>Even</th>
<th>Odd</th>
<th>Even</th>
<th>Odd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odd</td>
<td>Even</td>
<td>Odd</td>
<td>Even</td>
</tr>
<tr>
<td>Even</td>
<td>Odd</td>
<td>Even</td>
<td>Odd</td>
</tr>
<tr>
<td>Odd</td>
<td>Even</td>
<td>Odd</td>
<td>Even</td>
</tr>
<tr>
<td>Even</td>
<td>Odd</td>
<td>Even</td>
<td>Odd</td>
</tr>
</tbody>
</table>
Make Ten Go Fish

What you will need for this game:

- A deck of cards with the face cards and 10s removed (only cards 1-9)

Directions:

This game is played with the same rules as Go Fish, but instead of making pairs, players make pairs that add up to ten.

Each player receives five cards.

During a player’s turn they can ask another player if they have a certain number (example: A player with an ace would ask someone else for a nine). If the other player has this card, they will give it to the person who asked for it. The player will lay down the pair and it will be the next person’s turn.

If a player asks another for a card and the player being asked does not have that card, he or she tells the person to “Go Fish.” The person whose turn it is picks up a card from the remaining cards in the deck. The player can lay down a pair at that time if he or she has one. Otherwise it is the next person’s turn.

Play ends when one player has gotten rid of all of the cards in their hand.

This game was modified from https://www.buildmathminds.com.
Best Sum/Product

What you will need for this game:

• A deck of cards

Directions:

This game can either focus on addition or on multiplication.

Aces are worth 1 and face cards are worth 10.

Before starting the game, decide if you will being looking for the best sum (addition) or the best product (multiplication). Each player is dealt six cards. The rest of the deck in put back in the center. Two cards from the center deck are flipped over. These cards are either added or multiplied together (depending on which game you are playing).

Each player looks at the cards in his or her hand and flips up to four cards (1—4 cards) to try to match the sum/product of the two cards that were turned over.

The person who is closest to the sum/product wins the round and can set his or her cards aside.

The winning player then gets to draw enough cards to replace those ones used in the last turn.

Other players have to put the cards they had just played back into their hand.

The game continues until there are no cards left in the center; the player with the most cards wins.

Example:

In this game, player 2 would win because the product of her three cards is only one away from the target product.

Player two would put these three cards in a pile and draw three more cards from the pile.

Player 1 would put the 6 and the 2 back into his hand and replay these later.
What you will need for this game:

- A deck of cards with the face cards removed

Directions:

Deal ten cards to each player, face down, in two rows of five. The remaining cards are placed in a draw pile.

Flip over the top card in the deck and the first player can choose to take that card or draw from the pile. Players place the card they draw in the correct position. Aces (1) is in the top left position, five is in the top right, sixes are in the bottom left, and tens are in the bottom right position.

As players place cards, they flip over the card that was previously in that position. If they can use this new card in another position, they can continue playing. When they no longer can play any cards, they discard and it is the next person’s turn.

The next player can either use the discarded card or they can choose the next card in the stack.

A round stops when a player places all ten cards in the correct position.

The next round begins. The winner of the previous round is dealt one less card (1-9) and the other players receive ten.

The game ends when one player no longer has any cards.

Example:

This player’s turn ended because she drew a five, but she already had this card played. She was forced to discard the five of spades and pass her turn.

This game was modified from www.buildmathminds.com
War—Math Version

What you will need for this game:

• A deck of cards with the face cards removed

Directions:

Many of us are familiar with the card game War. These versions of the game are modified to focus on mathematical operations. All versions start with dealing out all of the cards. The winner of each round gets the cards of their opponent. If there is a tie during a round then players play another round, with the winner taking all of the cards from both rounds. The game ends when one player has all of the cards.

Select one of the versions below:

• Addition War
 • In this version of the game each player will flip two cards each round. The values of the cards are added and the person with the larger number wins the round.

• Subtraction War
 • In this version of the game each player will flip two cards. The values of the cards are subtracted. You can play that either the person with the largest difference or smallest difference wins.
 • You can also play this game with three cards for each player per round. The players choose any two cards to make a two-digit number. They take the value of the third card away from the two-digit number. The person with the biggest value wins.

• Multiplication War
 • In this version of the game each player will flip two cards. The values of the cards are multiplied together. The person with the largest product wins the round.

• Fractions War (2 dice for each player)
 • In this version of the game players will need to decide if they are looking for the largest fraction, the smallest fraction, or the fraction closest to 1/2. Players will flip two cards. They will use the value of one of the cards for the numerator (top number) of the fraction and the other card will be used to make the denominator (bottom number). The winner of the round depends on the objective established at the beginning of the game.
Base-Ten Riddles

Base-Ten Riddles are tasks that push students to think about place value as a mathematical structure. Children are given clues about a particular number and then asked to say what that number is, based on those clues. The questions press children to think about place value in non-traditional ways. These riddles aid children in building a deep understanding of place value and the number system.

Early Elementary Examples

• What number has exactly 4 tens, 3 ones, and 2 hundreds?
• I am a number with exactly 2 tens and 13 ones. What number am I?
• I am a number with 5 tens and 17 ones, what number am I?
• I am the number 56. If I have exactly 3 tens, how many ones do I have?

Upper Elementary Examples

• I am a number with exactly 30 tens, 5 hundreds, 9 ones, and 6 thousands. What number am I?
• I am a number with exactly 15 hundreds, 8 thousands, 18 ones, and 22 tens. What number am I?
• I am the number 72,485. I have 36 tens, 4 ten thousands, 25 ones, and 31 hundreds. How many thousands do I have?
• I am a number with exactly 39 ones, 5 hundreds, and 62 tens. How far from 3,000 am I?

These riddles can be made up quickly and it is not necessary to always have an answer in mind when making up a question. Parents can make up Base-Ten Riddles for their children and children can make up these riddles for themselves.

A Note about Place Value

It is difficult for many children, and adults, to conceptualize large numbers. This is why it is vital that children continue to think about place value. Understanding the concept of scale, such as how the quantities 500 and 5,000 are different, can be aided through visual representations of both values. On the next page there is a grid that may benefit children as they explore these base-ten riddles. Children in upper elementary can use the grid to identify quantities as they solve the base-ten riddles.
Base-Ten Riddles

How many tiny squares are in this grid?

This grid comes from Van de Walle’s Blackline Masters: https://wps.ablongman.com/ap_vandewalle_math_6/0,12312,3547876-00.html
Math Scavenger Hunts

There is mathematics everywhere we look, but sometimes we need to know what we are looking for in order to find it. Here are several math-based scavenger hunts that children can do either in their home, the backyard, or during a walk in the neighborhood.

Children will need to describe each of the objects they find (either verbally or in writing), justifying how they know that the object they found matches the clue on the scavenger hunt. Children can also draw pictures of the object to help describe their thinking. The scavenger hunt may take more than one day to complete.

This sentence frame may help students communicate their thinking:

“The match I found for (state the clue) is (name the object). I know this is a match because __________________________.”

Although some objects that children find may match more than one clue on the list, children should find a new item for each of the entries on the scavenger hunt. Children will need to make choices about how to use specific objects to complete the scavenger hunt.

All clues correspond to learning objectives in the areas of geometry and measurement from the Idaho Content Standards for Mathematics. If students are unfamiliar with vocabulary, they can look up the definitions of terms either in their math textbook or on the internet.

K-2 Geometry Scavenger Hunt

- Find an object that is a triangle
- Find an object that has two rectangles in it
- Find an object that is a square
- Find an object that is a circle
- Find an object that has more than 4 angles
- Find an object that is made up of more than one shape; list all of the shapes
- Find an object that is a cube
- Find an object that is a sphere
- Find an object that is a cylinder
- Find a trapezoid
- Find a quadrilateral
- Find a hexagon
- Find an octagon
- Find a shape not on this list, name the shape
Math Scavenger Hunts

3-5 Geometry Scavenger Hunt
- Find a quadrilateral
- Find an equilateral triangle
- Find a trapezoid
- Find a concave polygon
- Find a convex polygon
- Find a set of parallel lines
- Find a line segment
- Find a hemisphere
- Find a regular polygon
- Find a right angle
- Find an isosceles triangle

- Find a pair of supplementary angles
- Find a pair of complementary angles
- Find a quadrilateral with four lines of symmetry
- Find an acute angle
- Find a rhombus
- Find a parallelogram
- Find an irregular polygon
- Find a shape that is not a polygon
- Find a set of perpendicular lines
- Find a scalene triangle

3-5 Measurement Scavenger Hunt
- Find an object that is one yard long
- Find an object that is between 40 and 50 inches long
- Find an object that is more than 100 inches long, but less than 130 inches long
- Find an object that is between 4 and 5 inches long
- Find an object that weighs more than 10 pounds but less than 20

- Find an object that has an area of more than 100 square inches, but less than 100 square inches
- Find an object that has an area of more than 10 square inches, but less than 25 square inches
- Find an object that has a volume of less than 15 cubic inches
- Find an object with a volume more than 100 cubic inches but less than 1000 cubic inches
The book *Bean Thirteen* by Matthew McElligott is a delightful story about Frank and Flora, two bugs who were picking beans for dinner. As Flora picks the last bean, Frank become desperate to figure out how to avoid the bad luck that comes with the 13th bean.

Use this link to hear the author read this story: https://www.matthewmcelligott.com/newwebsite/resources-for-teachers/

What you will need for this game:

- 13 items that can represent your beans

Directions:

Two players place their 13 “beans” in a pile in the middle of the game area.

Players take turns removing the beans from the center pile. On each turn a player can take either one or two beans.

To win this game, a player **MUST NOT** take the last “bean” from the pile; the player who takes the last bean (Bean 13) loses the game.

Think Mathematically

As children play this game they should look for patterns and think about their strategies. Players who can uncover the underlying mathematics of this game will improve their chance at success.
Tangrams

The exact date that Tangrams were first invented is unknown, but there is speculation that these puzzles have been part of Chinese culture for more than 1000 years. The popularity of Tangrams began to rise in the west more than 200 years ago.

Tangrams are a kind of geometric puzzle. There are seven pieces in a Tangram set and each is used in every build. Through manipulation of the pieces, objects, animals, and people can be built. Some of these creations are easier to see than others. Some patterns are easier to create than others. Using Tangrams can test a person’s perseverance, but solving these puzzles deepens spatial awareness and understanding of the relationships between objects. Using Tangrams promotes reasoning about the relationship between shapes, how rotations and flips affect the appearance of shapes, and how larger shapes can be composed of smaller shapes. All of these skills will help students not only in future mathematics classes, but with real world problems involving how space is used.

Included in the back of your book is a set of the seven Tangram shapes that you can cut out and use to solve puzzles. (You can even color them if you’d like to.) There are two pages of animals that can be built with the seven pieces and a little patience. All of the included shapes are silhouettes, meaning that there are no lines. Children may want to try building the puzzles on this page first as the lines are included.

The book Grandfather Tang’s Story by Ann Tompert provides a story told in tangrams. There are a number of videos posted on YouTube of teachers reading this book for students. The animals on this page all come from this story.

There are many puzzles available online, but children should be encouraged to create their own patterns with Tangrams. They can draw these shapes and present puzzles to others in their household.
Tangrams

Bear

Apatosaurus

Turtle

Triceratops

Pteranodon

Stegosaurus
Tangrams

Killer Whale

Hummingbird

Penguin

Swan

Cat

Dog
Pattern Blocks

Pattern blocks are versatile manipulatives that are used in classrooms from kindergarten through middle school. In early grades, they are used to represent shapes. In middle elementary, the relationship between the pieces is used to study fractions. In later grades, pattern blocks are used to study ratios and algebraic relationships. There is a set of pattern blocks in the back of your book. You can cut out the shapes to make a full set.

Like Tangrams, pattern blocks can be used to create pictures. Using the pattern blocks in this way helps students to see the relationships between the various blocks. Asking questions like, “How did you know that piece would fit there?” is a good way to support children’s thinking about these relationships. There are a number of websites with pattern block pictures for students to create, or they can use their own imaginations to design their own.

Here is one website with a variety of patterns: https://www.prekinders.com/pattern-blocks/

Older children begin to see pattern blocks as tools. Using the relationships between the blocks, children can use the manipulatives to solve problems involving fractions.

Children in second grade can see the relationship between the trapezoids and hexagons and can discuss how a trapezoid is half of a hexagon because it takes two trapezoids to make one hexagon.

Second Grade:

“Two trapezoids equal one hexagon so a trapezoid is half of a hexagon.”

Children in third grade begin to understand that fractions are made up of unit fractions (fractions with one as a numerator such as 1/2 or 1/4). They see that they can combine unit fractions to make other fractions. They can use this thinking to create the whole when give a unit fraction.

Third grade

“If a triangle is 1/3 of the whole, then a trapezoid would be the whole because three triangles makes a trapezoid.”

Fourth and fifth grade students use these understandings to efficiently add, subtract, and multiply fractions. They also divide fractions, but the standard algorithm is not introduced until sixth grade (Idaho Content Standards for Mathematics, 2019).
Mathematizing Pattern Block Pictures

Children will naturally begin to use the blocks to create pictures and patterns, which is highly encouraged. This process helps children develop an understanding of how each piece relates to the other pieces. This play also helps students think about geometric transformations, a focus in middle school and high school math classes. Although these experiences are helpful, parents can help elementary aged children focus on their content with a few targeted questions. See some examples below.

For Younger Students:

“Could you have made the picture with less pieces? Which pieces could you traded?”

“Look at the turtle shown here. If we took all of the pieces and traded them from hexagons, how many hexagons would we have?”

For Older Students:

“If a snake is a whole, what fraction of the snake is being made out of triangles? What fraction of the snake is being make from rhombuses?”

“Look at the snake, what is the ratio of triangles to rhombuses?”

“If the snake is the whole, what percentage of the whole is shown by the trapezoid?”
Pattern Hunter (Grades 3-5)

These tasks present a pattern. Several of the steps of the pattern are given. Children use thinking questions to reason through what the next step in the pattern will be. The following thinking questions are presented as a way to think about what is happening from one step to the next in the pattern. Students can use their pattern block set to think about these patterns.

Thinking questions:
- What is changing each time?
- What is staying the same each time?
- How does one shape relate to the other shapes?
- What do I think the next step will look like?

Pattern 1

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>△</td>
</tr>
<tr>
<td>2)</td>
<td>□</td>
</tr>
<tr>
<td>3)</td>
<td>□ △</td>
</tr>
<tr>
<td>4)</td>
<td>□ □ □</td>
</tr>
<tr>
<td>5)</td>
<td>□ □ □ △</td>
</tr>
</tbody>
</table>

Children can use this sentence frame to help them explain the next step in the pattern:

“Using what I know, I think the next pattern will be __________. I know this because __.”
Tangrams

Color and cut out the seven Tangram pieces below and start building the shapes in the activity book.
Pattern Block Cut-Outs: Hexagon
Pattern Block Cut-Outs: Rhombus—blue, Triangle—green.
Pattern Block Cut-Outs: Trapezoid—red, Triangle—green.
Feeding Piggy

Pennies

<table>
<thead>
<tr>
<th>1¢</th>
<th>1¢</th>
<th>1¢</th>
<th>1¢</th>
<th>1¢</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dimes

<table>
<thead>
<tr>
<th>10¢</th>
<th>10¢</th>
<th>10¢</th>
<th>10¢</th>
<th>10¢</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dollars

100¢ = $1.00
Feeding Piggy

Pennies

<table>
<thead>
<tr>
<th>1¢</th>
<th>1¢</th>
<th>1¢</th>
<th>1¢</th>
<th>1¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>1¢</td>
<td>1¢</td>
<td>1¢</td>
<td>1¢</td>
<td>1¢</td>
</tr>
</tbody>
</table>

Dimes

<table>
<thead>
<tr>
<th>10¢</th>
<th>10¢</th>
<th>10¢</th>
<th>10¢</th>
<th>10¢</th>
</tr>
</thead>
<tbody>
<tr>
<td>10¢</td>
<td>10¢</td>
<td>10¢</td>
<td>10¢</td>
<td>10¢</td>
</tr>
</tbody>
</table>

Dollars

100¢ = $1.00
Feeding Piggy

<table>
<thead>
<tr>
<th>Pennies</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1\ cent$</td>
</tr>
<tr>
<td>$1\ cent$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimes</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10\ cents$</td>
</tr>
<tr>
<td>$10\ cents$</td>
</tr>
</tbody>
</table>

Dollars

$100\ cents = \$1.00$